

Präsentation zur Bachelorarbeit von René Korn

Ladestrategie für primärleistungsfähige Batterien

Referent: Prof. Dr. Eberhard Waffenschmidt

Co-Referent: Prof. Dr. Ingo Stadler

Studiengang: Erneuerbare Energien (Ba.)

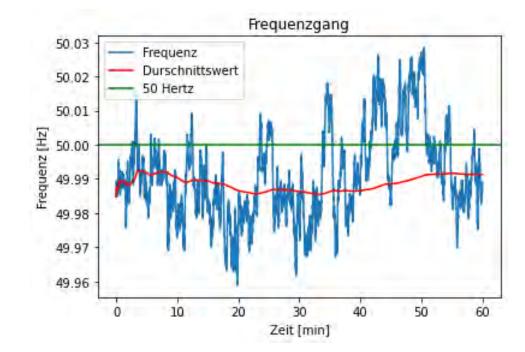
Gliederung

Problemstellung

Grundlagen

Konzept der Ladestrategie

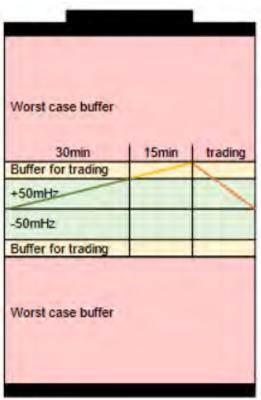
Extremfallbetrachtung


Verkaufssimulation

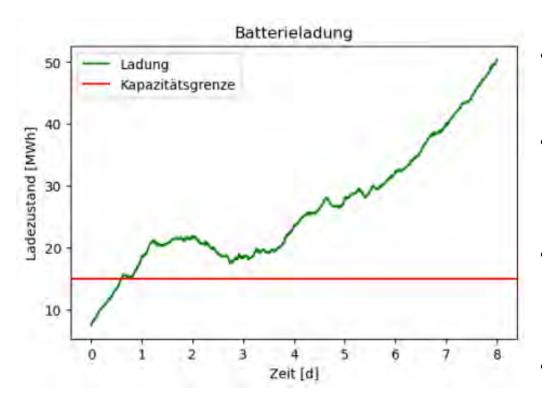
Fazit

Technische Hochschule Köln

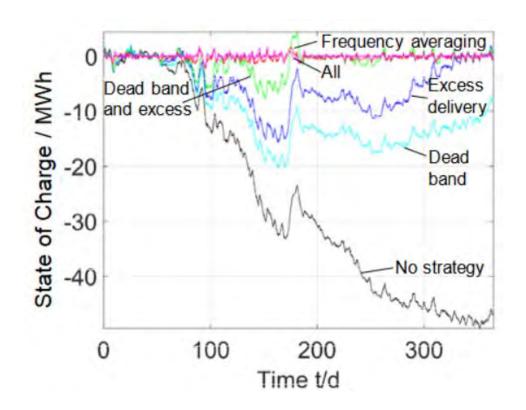
Problemstellung


- Batterien die Primärregelleistung liefern werden frequenzgesteuert geladen
- Theoretischer Ausgleich zwischen Werten über und unter 50 Hz
- Bei längeren Frequenzabweichungen können die kapazitären Grenzen der Batterie erreicht werden
- Synchronzeit als Maß für die Abweichung

Notwendigkeit des Kaufs oder Verkaufs von Energie


Degrees_of_freedom_for_primary_control_with_batteries-IRES2017-Paper.pdf

- Garantie der Ladezustandshaltung über vier Stunden
- Ladezustandskontrolle durch Freiheitsgrade
- Zukauf von Energie als Wort-Case
- Abhängig von der Frequenz und dem Strompreis
- Keine Möglichkeit zu spekulieren
- Risiko das über das Jahr teurer eingekauft als verkauft wird


Bildquelle: http://www.100pro-erneuerbare.com/publikationen/2017-03-Waffenschmidt-IRES/Waffenschmidt-

Ladezustand einer Batterie

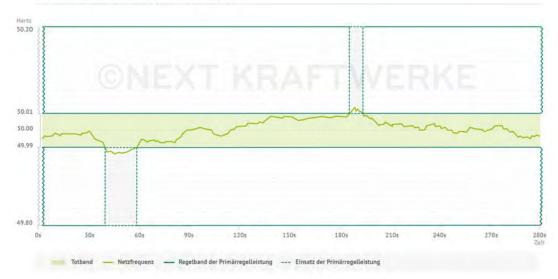
- Python Simulationstool zur Ladezustandsberechnung
- Daten einer Batterie mit 15 MWh Kapazität und 10 MW vermarktete Leistung am Primärregelleistungsmarkt
- Bei einem Mittelwert von 50.0047 Hz ergibt sich ein errechneter Ladezustand von 50,46 MWh
- Zeitraum aufgrund der langfristigen, einseitigen Abweichung

Stand der Technik

- Grundlegende Forschung von Professor Eberhard Waffenschmidt
- Berechnung des Ladezustandes über ein Jahr
- Nutzung eines Verstärkungsfaktor zur Korrekturwertbildung
- Keine Wirkungsgrade beim Laden und Entladen Berücksichtigt

Bildquelle: http://www.100pro-erneuerbare.com/publikationen/2017-03-Waffenschmidt-IRES/Waffenschmidt-Degrees_of_freedom_for_primary_control_with_batteries-IRES2017-Presentation.pdf

Netzfrequenz


Bildquelle: https://ilias.th-koeln.de/goto.php?target=file_1589642_download&client_id=ILIAS_FH_Koeln

Abweichung	Maßnahme
0,2 Hz	Sämtliche Erzeuger Mobilisiert / Abwurf von Pumpen
1 Hz	10-15 % Lastabwurf
1,3 Hz	Weitere 10-15 %
1,6 Hz	Weitere 15-20 %
2,5 Hz	Abtrennung aller Erzeuger

Primärregelleistung

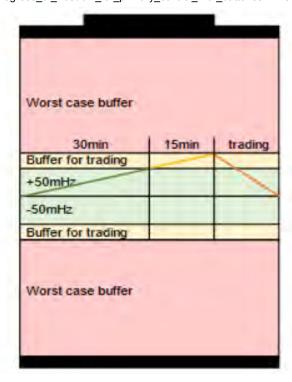

Bildquelle: https://www.next-kraftwerke.de/wissen/netzfrequenz

Zeitlicher Ablauf der Netzfrequenz

Bildquelle: https://www.next-kraftwerke.de/wissen/primaerreserve-primaerregelleistung

Anforderungsprofil zur Erbringung von Primärregelleistung

Technische Hochschule Köln

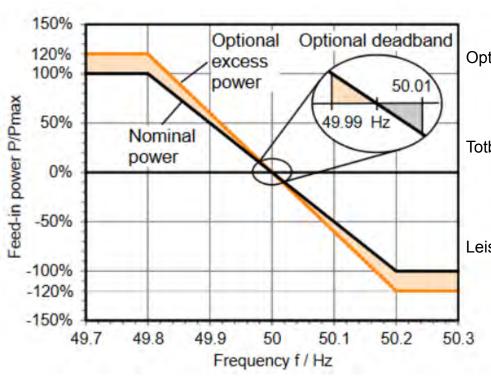

24.04.2021

8/25

Technology Arts Sciences TH Köln

Anforderungen an Batterien im Primäregelleistungsmarkt

Bildquelle: http://www.100pro-erneuerbare.com/publikationen/2017-03-Waffenschmidt-IRES/Waffenschmidt-Degrees of freedom for primary control with batteries-IRES2017-Paper.pdf



Vorhaltung von Energiereserven für:

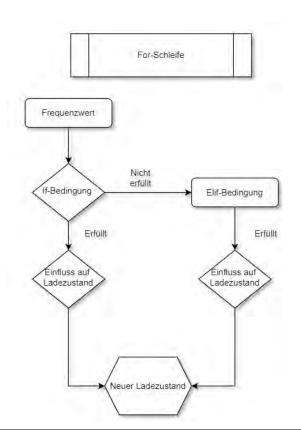
- 30 Minuten Abweichung von <50 mHz
- 15 Minuten Abweichung >50 mHz bis 100 mHz
- 5 Minuten Abweichung von >100 mHz bis 200 mHz
- Vorliegen einer Abweichung von 200 mHz
- Verhältnis von Kapazität zu vermarkteter Leistung bestimmt die Grenzen
- Weitere Einschränkungen durch vorzuhaltende Energie für eine halbe Stunde Vorlaufzeit des Handels

Technology

Freiheitsgrade zur Ladezustandskontrolle

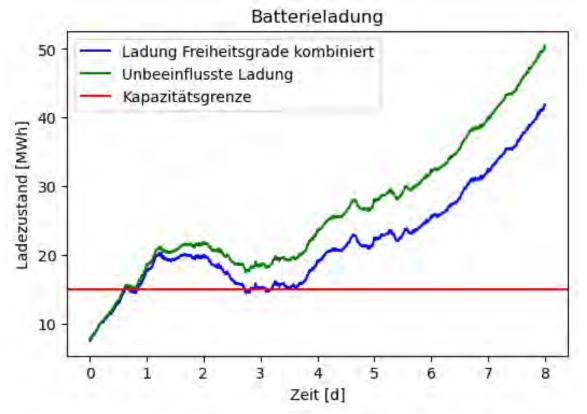
Optionale Übererfüllung → Mehrerbringung an Lade- oder Entladeleistung

Totbandladung → Geringe Leistungsabgabe oder Aufnahme im Totband

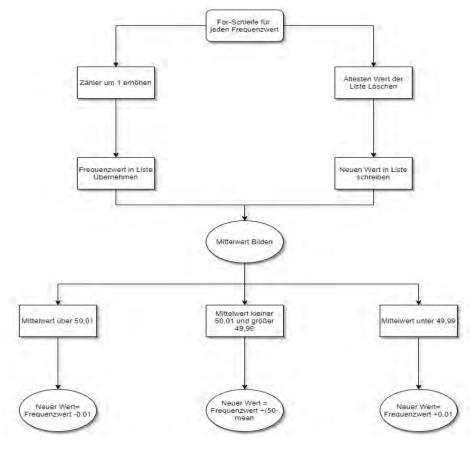

Leistungsgradient → 30 Sekunden bis zur Erbringung der gesamten Leistung

Bildquelle: http://www.100pro-erneuerbare.com/publikationen/2017-03-Waffenschmidt-IRES/Waffenschmidt-Degrees of freedom for primary control with batteries-IRES2017-Paper.pdf

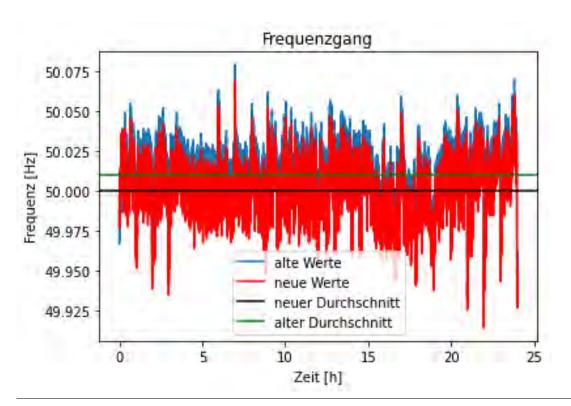
Konzept der Ladestrategie


- Messgenauigkeit von 0,01 Hz gefordert
- Genauigkeitsklasse der Frequenzmessung Klasse 0,02
- Laufender Mittelwert als Basis zur Korrekturwertbildung
- vier Stunden Mittelwert (Ausschreibungszeitraum der Primärregelleistung)
- Alternative 24 Stunden (Synchronzeit)
- Einbeziehen von Verlusten und Verkauf sowie Wirkungsgraden

Grundlegende Steuerung


- Jeder Frequenzwert wird auf Bedingungen geprüft
- Einfluss auf Ladezustand abhängig von Differenz auf Soll-Wert 50 Hz und Ist-wert

Ladezustand Freiheitsgrade



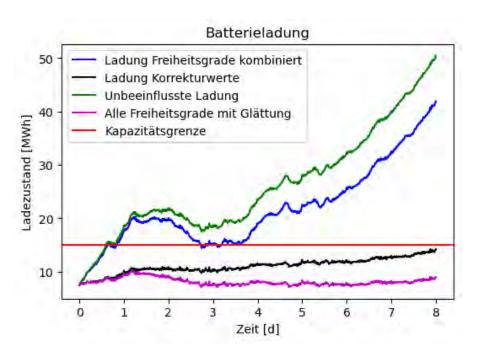
Verringerung des Ladezustandes um 8,53 MWh

Bildung des laufenden Mittelwertes

Auswirkung der Korrektur

Alte Werte:

Durchschnitt von 50,0098 Hz

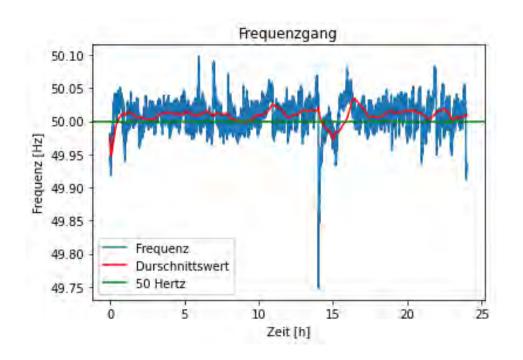

Synchronzeitabweichung von 17,28 Sekunden

Neue Werte:

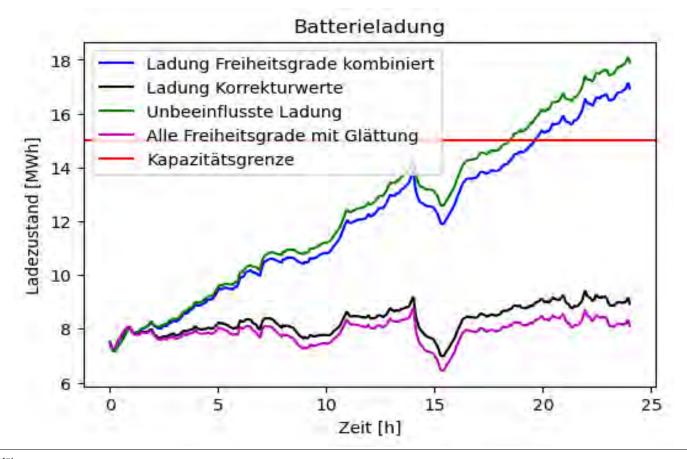
Durchschnitt von 50,001 Hz

Synchronzeitabweichung von 0,67 Sekunden

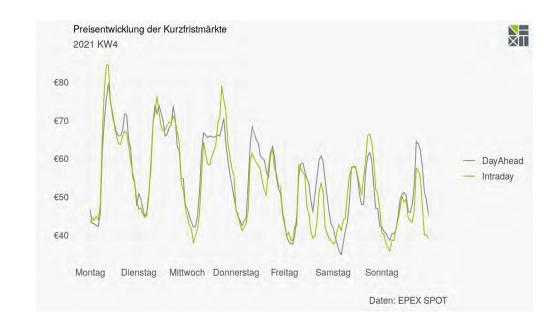
Ergebnis der Strategie



7,12 MWh im Minimum und 10,16 MWh im Maximum für vier Stunden


0,59 MWh im Minimum und 9,51 MWh im Maximum für 24 Stunden

Extremfallbetrachtung


- Zwischenfall im europäischen Stromnetz
- Fehlkalkulation von Wetter und Verbrauch
- Minimalwert von 49,7481 Hz

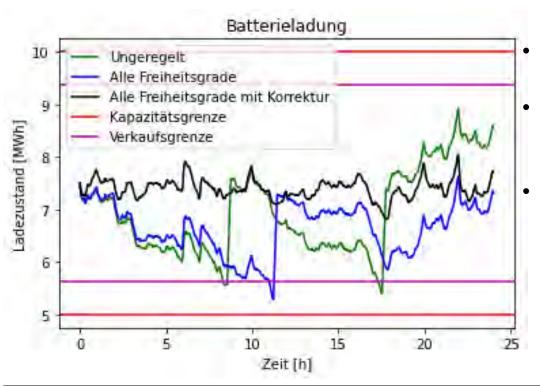
Ladezustandsverlauf des Zwischenfalls


Verkaufssimulation

- Obere Verkaufsgrenze von 9,675 MWh
- Untere Verkaufsgrenze von 5,625 MWh
- Ausspeicherleistung von 7.5 MW
- Verkauf von 2 MW am Strommarkt

Bildquelle: https://mailchi.mp/261422c1f259/strommarktanalyse-kw4?e=e2b49aa903

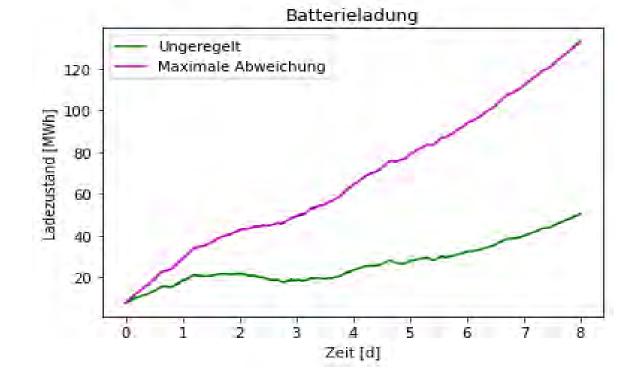
Wirtschaftliche Auswirkungen


Technische Hochschule Köln

24.04.2021

20/25

Technology Arts Sciences TH Köln


Ladezustandsverlauf mit Börsengeschäften

- Ungeregelt ein Kostenaufwand von 292,3 €
- Nutzung der Freiheitsgrade mit Kostenaufwand von 160,22 €
- Durch Korrekturwert kein Zukauf notwendig

Frequenzmaximierung

Nutzen der Toleranz für einen Korrekturwert von +0,01

Ladezustand von 133,03 MWh

Wirtschaftliche Auswirkung der Frequenzmaximierung

Technische Hochschule Köln

24.04.2021

23/25

Technology Arts Sciences TH Köln

Fazit

- Herkömmliche Freiheitsgrade können nicht garantieren, dass der Ladezustand in den Grenzen gehalten werden
- Das erstellte Konzept wies ein deutlich verbessertes Ladezustandsverhalten auf
- Vier Stunden als Basis für den Mittelwert mit besseren Ergebnissen
- Auch für extreme Abweichungen geeignet
- Frequenzmaximierung mit deutlich höheren Erlösen, aber keine argumentative Grundlage gegenüber den Netzbetreibern
- Risiko des kostenintensiven Zukaufs konnte deutlich verringert werden

Vielen Dank für die Aufmerksamkeit